There is a box protected by a password. The password is
n
digits, where each letter can be one of the first k
digits 0, 1, ..., k-1
.
You can keep inputting the password, the password will automatically be matched against the last
n
digits entered.
For example, assuming the password is
"345"
, I can open it when I type "012345"
, but I enter a total of 6 digits.
Please return any string of minimum length that is guaranteed to open the box after the entire string is inputted.
Example 1:
Input: n = 1, k = 2 Output: "01" Note: "10" will be accepted too.
Example 2:
Input: n = 2, k = 2 Output: "00110" Note: "01100", "10011", "11001" will be accepted too.
Note:
n
will be in the range[1, 4]
.k
will be in the range[1, 10]
.k^n
will be at most4096
.
题意是找一个最短的string,这个string得包含所有n长度的排列组合。最优的解是2个排列组合之间只相差一位,如 1234 -> 2345, *234 -> 234*. 解法是把234看作一个结点,12345为这个结点的边,把所有边都遍历一次就可以了
Eulerian path的定义https://en.wikipedia.org/wiki/Eulerian_path
用Hierholzer's algorithm来求path
O(k * k^n) time, Hierholzer's algorithm本来 是O(k^n), 但是以下实现方式每次都对k个边做检查来寻找未走过的边,所以有额外的k消耗
ToDo
class Solution { public String crackSafe(int n, int k) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append("0"); } Set<String> visited = new HashSet<>(); visited.add(sb.toString()); dfs(sb, visited, k, n); return sb.toString(); } private void dfs(StringBuilder sb, Set<String> visited, int k, int n) { String node = sb.substring(sb.length() - n + 1); for (int i = k - 1; i >= 0; i--) { String s = node + Integer.toString(i); if (!visited.contains(s)) { visited.add(s); sb.append(Integer.toString(i)); dfs(sb, visited, k, n); } } } }
No comments:
Post a Comment