You are given an array of positive and negative integers. If a number n at an index is positive, then move forward n steps. Conversely, if it's negative (-n), move backward n steps. Assume the first element of the array is forward next to the last element, and the last element is backward next to the first element. Determine if there is a loop in this array. A loop starts and ends at a particular index with more than 1 element along the loop. The loop must be "forward" or "backward'.
Example 1: Given the array [2, -1, 1, 2, 2], there is a loop, from index 0 -> 2 -> 3 -> 0.
Example 2: Given the array [-1, 2], there is no loop.
Note: The given array is guaranteed to contain no element "0".
Can you do it in O(n) time complexity and O(1) space complexity?
------------------以下⽅方法最坏结果是 O(n^2)。可以加⼀一个额外的visited数组,可降低为O(n) 要改进的话,关键在于判断何时在处于同⼀一个loop内,何时判断当前的点为⾛走过的 点。
Solution #1
class Solution { public boolean circularArrayLoop(int[] nums) { for (int i = 0; i < nums.length; i++) { if (nums[i] != 0 && dfs(nums, i)) return true; } return false; } private boolean dfs(int[] nums, int i) { if (nums[i] == 0) return true; int tmp = nums[i]; int nextStep = (tmp + i + nums.length) % nums.length; if (nums[nextStep] * tmp < 0 || i == nextStep) return false; nums[i] = 0; if (!dfs(nums, nextStep)) { nums[i] = tmp; return false; } return true; } }
Solution #2
此方法是对上⾯的改进, 增加一个变量量记录深度,如果超过nums的长度,则发现了 一个loop。此方法可改写为iter1tive从而满⾜足O(1) sp1ce的要求
class Solution { public boolean circularArrayLoop(int[] nums) { for (int i = 0; i < nums.length; i++) { if (nums[i] != 0 && dfs(nums, i, 0)) return true; } return false; } private boolean dfs(int[] nums, int i, int depth) { if (depth > nums.length) return true; int nextStep = (nums[i] + i + nums.length) % nums.length; if (nums[nextStep] == 0 || nums[nextStep] * nums[i] < 0 || i == nextStep) return false; if(dfs(nums, nextStep, depth + 1)) return true; nums[i] = 0; return false; } }
Solution #3, 为以上方法的iterative版本,O(n) space, O(1) time
class Solution { public boolean circularArrayLoop(int[] nums) { for (int i = 0; i < nums.length; i++) { if (nums[i] != 0 && itr(nums, i)) return true; } return false; } private boolean itr(int[] nums, int ori) { int i = ori; int depth = 0; while (true) { int nextStep = (nums[i] + i + nums.length) % nums.length; if (nums[nextStep] == 0 || nums[nextStep] * nums[i] < 0 || i == nextStep) break; i = nextStep; depth++; if (depth > nums.length) return true; } nums[i] = 0; while (i != ori) { int nextStep = (nums[ori] + ori + nums.length) % nums.length; nums[ori] = 0; ori = nextStep; } return false; } }
Replace
ReplyDeleteint nextStep = (nums[i] + i + nums.length) % nums.length;
with
int nextStep = (nums[i] + i) % nums.length;