You are given an array of positive and negative integers. If a number n at an index is positive, then move forward n steps. Conversely, if it's negative (-n), move backward n steps. Assume the first element of the array is forward next to the last element, and the last element is backward next to the first element. Determine if there is a loop in this array. A loop starts and ends at a particular index with more than 1 element along the loop. The loop must be "forward" or "backward'.
Example 1: Given the array [2, -1, 1, 2, 2], there is a loop, from index 0 -> 2 -> 3 -> 0.
Example 2: Given the array [-1, 2], there is no loop.
Note: The given array is guaranteed to contain no element "0".
Can you do it in O(n) time complexity and O(1) space complexity?
------------------以下⽅方法最坏结果是 O(n^2)。可以加⼀一个额外的visited数组,可降低为O(n) 要改进的话,关键在于判断何时在处于同⼀一个loop内,何时判断当前的点为⾛走过的 点。
Solution #1
class Solution {
public boolean circularArrayLoop(int[] nums) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 0 && dfs(nums, i)) return true;
}
return false;
}
private boolean dfs(int[] nums, int i) {
if (nums[i] == 0) return true;
int tmp = nums[i];
int nextStep = (tmp + i + nums.length) % nums.length;
if (nums[nextStep] * tmp < 0 || i == nextStep) return false;
nums[i] = 0;
if (!dfs(nums, nextStep)) {
nums[i] = tmp;
return false;
}
return true;
}
}
Solution #2
此方法是对上⾯的改进, 增加一个变量量记录深度,如果超过nums的长度,则发现了 一个loop。此方法可改写为iter1tive从而满⾜足O(1) sp1ce的要求
class Solution {
public boolean circularArrayLoop(int[] nums) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 0 && dfs(nums, i, 0)) return true;
}
return false;
}
private boolean dfs(int[] nums, int i, int depth) {
if (depth > nums.length) return true;
int nextStep = (nums[i] + i + nums.length) % nums.length;
if (nums[nextStep] == 0 || nums[nextStep] * nums[i] < 0 || i == nextStep) return false;
if(dfs(nums, nextStep, depth + 1)) return true;
nums[i] = 0;
return false;
}
}
Solution #3, 为以上方法的iterative版本,O(n) space, O(1) time
class Solution {
public boolean circularArrayLoop(int[] nums) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 0 && itr(nums, i)) return true;
}
return false;
}
private boolean itr(int[] nums, int ori) {
int i = ori;
int depth = 0;
while (true) {
int nextStep = (nums[i] + i + nums.length) % nums.length;
if (nums[nextStep] == 0 || nums[nextStep] * nums[i] < 0 || i == nextStep) break;
i = nextStep;
depth++;
if (depth > nums.length) return true;
}
nums[i] = 0;
while (i != ori) {
int nextStep = (nums[ori] + ori + nums.length) % nums.length;
nums[ori] = 0;
ori = nextStep;
}
return false;
}
}
Replace
ReplyDeleteint nextStep = (nums[i] + i + nums.length) % nums.length;
with
int nextStep = (nums[i] + i) % nums.length;