Given a sorted array of integers nums and integer values a, b and c. Apply a quadratic function of the form f(x) = ax2 + bx + c to each element x in the array.
The returned array must be in sorted order.
Expected time complexity: O(n)
Example 1:
Input: nums = [-4,-2,2,4], a = 1, b = 3, c = 5 Output: [3,9,15,33]
Example 2:
Input: nums = [-4,-2,2,4], a = -1, b = 3, c = 5 Output: [-23,-5,1,7]
一元二次方程
咋看之下有4种情况 a > 0, a < 0, a == 0 && b > 0, a ==0 && b < 0, 其实代码一整合就只有2种:a >= 0和a < 0
class Solution { public int[] sortTransformedArray(int[] nums, int a, int b, int c) { int n = nums.length; int[] rt = new int[n]; int left = 0, right = n - 1; int itr = a >= 0 ? n - 1 : 0; while (left <= right) { if (a >= 0) { if (f(nums[left], a, b, c) > f(nums[right], a, b, c)) { rt[itr] = f(nums[left], a, b, c); left++; }else { rt[itr] = f(nums[right], a, b, c); right--; } itr--; }else { if (f(nums[left], a, b, c) < f(nums[right], a, b, c)) { rt[itr] = f(nums[left], a, b, c); left++; }else { rt[itr] = f(nums[right], a, b, c); right--; } itr++; } } return rt; } private int f(int x, int a, int b, int c) { return a * x * x + b * x + c; } }
No comments:
Post a Comment