Thursday, September 10, 2015

Day 125, #279 #280 Perfect Squares, Wiggle Sort, H-Index II

Perfect Squares
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
----------------------------------------------------
O(n * sqrt(n)) dp递归, 同样复杂度,但过不了oj
class Solution {
public:
    int helper(unordered_map<int,int> &dic,int n) {
        if (n < 4) return n;
        if (dic.find(n) != dic.end()) return dic[n];
        
        int minLen = INT_MAX;
        int i = (int)sqrt(n);
     for (; i > 0; i--) {
      minLen = min(minLen,helper(dic,n - i * i) + 1);
     }
     dic[n] = minLen;
     return minLen;
    }

    int numSquares(int n) {
        unordered_map<int,int> dic;
     return helper(dic,n);
    }
};

COME_BACK: 注意如何从递归转化为遍历
遍历dp
class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1,INT_MAX);
        dp[0] = 0;
        
        for (int i = 0; i <= n; i++) {
            for (int j = 1; j *j + i <= n; j++) {
                dp[i + j * j] = min(dp[i + j * j],dp[i] + 1);
            }
        }
        return dp[n];
    }
};

In Java
class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;
        
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j * j <= i; j++) {
                dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
            }
        }
        
        return dp[n];
    }
}

Wiggle Sort
Given an unsorted array nums, reorder it in-place such that nums[0] <= nums[1] >= nums[2] <= nums[3]....
For example, given nums = [3, 5, 2, 1, 6, 4], one possible answer is [1, 6, 2, 5, 3, 4].
-------------------------------------------
class Solution {
public:
    void wiggleSort(vector<int>& nums) {
        for (int i = 0; i < (int)nums.size() - 1; i++) {
            if (i % 2 == 0 && nums[i] > nums[i + 1]) {
                swap(nums[i],nums[i + 1]);
            }else if (i % 2 == 1 && nums[i] < nums[i + 1]) {
                swap(nums[i],nums[i + 1]);
            }
        }
    }
};

H-Index II
Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimize your algorithm?
Hint:
  1. Expected runtime complexity is in O(log n) and the input is sorted.
--------------------------------------------------------------------------------
binary search
class Solution {
public:
    int hIndex(vector<int>& citations) {
        int left = 0, right = citations.size() - 1;
        int high = 0;
        int n = citations.size();
        while (left <= right) {
            int mid = (left + right) / 2;
            if (citations[mid] == n - mid) {
                return n - mid;
            }
            if (citations[mid] > n - mid) {
                high = max(high,n - mid);
                right = mid - 1;
            }else {
                left = mid + 1;
            }
        }
        
        return high;
    }
};

No comments:

Post a Comment