Given a positive integer n, find the least number of perfect square numbers (for example,
1, 4, 9, 16, ...) which sum to n.
For example, given n =
----------------------------------------------------12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.O(n * sqrt(n)) dp递归, 同样复杂度,但过不了oj
class Solution {
public:
int helper(unordered_map<int,int> &dic,int n) {
if (n < 4) return n;
if (dic.find(n) != dic.end()) return dic[n];
int minLen = INT_MAX;
int i = (int)sqrt(n);
for (; i > 0; i--) {
minLen = min(minLen,helper(dic,n - i * i) + 1);
}
dic[n] = minLen;
return minLen;
}
int numSquares(int n) {
unordered_map<int,int> dic;
return helper(dic,n);
}
};
COME_BACK: 注意如何从递归转化为遍历
遍历dp
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1,INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) {
for (int j = 1; j *j + i <= n; j++) {
dp[i + j * j] = min(dp[i + j * j],dp[i] + 1);
}
}
return dp[n];
}
};
In Java
class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j * j <= i; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
return dp[n];
}
}
Wiggle Sort
Given an unsorted array
nums, reorder it in-place such that nums[0] <= nums[1] >= nums[2] <= nums[3]....
For example, given
-------------------------------------------nums = [3, 5, 2, 1, 6, 4], one possible answer is [1, 6, 2, 5, 3, 4].class Solution {
public:
void wiggleSort(vector<int>& nums) {
for (int i = 0; i < (int)nums.size() - 1; i++) {
if (i % 2 == 0 && nums[i] > nums[i + 1]) {
swap(nums[i],nums[i + 1]);
}else if (i % 2 == 1 && nums[i] < nums[i + 1]) {
swap(nums[i],nums[i + 1]);
}
}
}
};
H-Index II
Follow up for H-Index: What if the
citations array is sorted in ascending order? Could you optimize your algorithm?
Hint:
- Expected runtime complexity is in O(log n) and the input is sorted.
binary search
class Solution {
public:
int hIndex(vector<int>& citations) {
int left = 0, right = citations.size() - 1;
int high = 0;
int n = citations.size();
while (left <= right) {
int mid = (left + right) / 2;
if (citations[mid] == n - mid) {
return n - mid;
}
if (citations[mid] > n - mid) {
high = max(high,n - mid);
right = mid - 1;
}else {
left = mid + 1;
}
}
return high;
}
};
No comments:
Post a Comment