Given an array of integers and an integer k, find out whether there there are two distinct indices i and j in the array such that nums[i] = nums[j] and the difference between iand j is at most k. ------------------------------------------------
this is one of the onsite interview questiona at fb, and I failed
class Solution { public: bool containsNearbyDuplicate(vector<int>& nums, int k) { unordered_map<int,int> dic; for (int i = 0; i < nums.size(); i++) { if (dic.find(nums[i]) != dic.end()) { return true; } dic[nums[i]] = i; // save space if (i - k >= 0) { dic.erase(nums[i - k]); } } return false; } };Contains Duplicate III
Given an array of integers, find out whether there are two distinct indices i and j in the array such that the difference between nums[i] and nums[j] is at most t and the difference between i and j is at most k.
------------------------------------------------------------
方法1,bucket sort,O(n),如果每个bucket里出现2个元素,则可直接返回true。所以确保了在程序运行过程中每个bucket只可能存在1个或者0个元素
casting的问题
k < 1 或 t < 0 直接返回false
(long long)t + 1, + 1是为了防止当t 为0
class Solution { public: bool containsNearbyAlmostDuplicate(vector<int>& nums, int k, int t) { if (k <= 0 || t < 0) return false; unordered_map<long long,int> bucket; for (int i = 0; i < nums.size(); i++) { long long inter = nums[i] + 2147483648; long long curBucket = inter / ((long long)t + 1); if (bucket.find(curBucket) != bucket.end() || (bucket.find(curBucket - 1) != bucket.end() && abs((long long)nums[i] - bucket[curBucket - 1]) <= t) || (bucket.find(curBucket + 1) != bucket.end() && abs((long long)nums[i] - bucket[curBucket + 1]) <= t)) { return true; } bucket[curBucket] = (long long)nums[i]; if (i - k >= 0) { long long oldBucket = (nums[i - k] + 2147483648) / ((long long)t + 1); bucket.erase(oldBucket); } } return false; } };
Maximal Square
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
-------------------------------------------------------------
看了提示tag
O(m * n) 空间, dp[i][j] 代表以i,j为右下角的正方形边长
class Solution { public: int maximalSquare(vector<vector<char>>& matrix) { int m = matrix.size(); if (m == 0) return 0; int n = matrix[0].size(); vector<vector<int> > dp(m,vector<int>(n,0)); int maxSquare = 0; for (int i = 0; i < m; i++) { if (matrix[i][0] == '1') { dp[i][0] = 1; maxSquare = 1; } } for (int i = 0; i < n; i++) { if (matrix[0][i] == '1') { dp[0][i] = 1; maxSquare = 1; } } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (matrix[i][j] == '1') { dp[i][j] = 1 + min(dp[i - 1][j - 1],min(dp[i - 1][j],dp[i][j - 1])); maxSquare = max(maxSquare,dp[i][j]); } } } return maxSquare * maxSquare; } };
O(n)空间优化,注意 else 语句将 dp[j] 清0
class Solution { public: int maximalSquare(vector<vector<char>>& matrix) { int m = matrix.size(); if (m == 0) return 0; int n = matrix[0].size(); vector<int> dp(n + 1, 0); int maxSquare = 0, pre = 0; for (int i = 0; i < m; i++) { for (int j = 1; j < n + 1; j++) { int temp = dp[j]; if (matrix[i][j - 1] == '1') { dp[j] = 1 + min(dp[j - 1],min(pre,dp[j])); maxSquare = max(maxSquare,dp[j]); }else { dp[j] = 0; } pre = temp; } } return maxSquare * maxSquare; } };
No comments:
Post a Comment