Given a collection of intervals, merge all overlapping intervals.
For example,
Given
[1,3],[2,6],[8,10],[15,18]
,return
[1,6],[8,10],[15,18]
.
----------------------------------------------------------------
/** * Definition for an interval. * struct Interval { * int start; * int end; * Interval() : start(0), end(0) {} * Interval(int s, int e) : start(s), end(e) {} * }; */ class Solution { public: static bool comp (const Interval &i1, const Interval &i2) { return i1.start < i2.start; } vector<Interval> merge(vector<Interval> &intervals) { sort(intervals.begin(),intervals.end(),comp); vector<Interval> ret; if (intervals.size() == 0) { return ret; } ret.push_back(intervals[0]); for (int i = 1; i < intervals.size(); i++) { if (intervals[i].start <= ret.back().end) { if (intervals[i].end > ret.back().end) { ret.back().end = intervals[i].end; } }else { ret.push_back(intervals[i]); } } return ret; } };Insert Interval
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals
[1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given
[1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval
[4,9]
overlaps with [3,5],[6,7],[8,10]
.
------------------------------------------------------------
Solution#1
/** * Definition for an interval. * struct Interval { * int start; * int end; * Interval() : start(0), end(0) {} * Interval(int s, int e) : start(s), end(e) {} * }; */ class Solution { public: vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) { vector<Interval> ret; int index = 0; int size = intervals.size(); while (index < size && newInterval.start > intervals[index].end) { ret.push_back(intervals[index]); index++; } // deal with overlapping while (index < size && newInterval.end >= intervals[index].start ) { newInterval.start = min(newInterval.start,intervals[index].start); newInterval.end = max(newInterval.end,intervals[index].end); index++; } ret.push_back(newInterval); // push in the rest while (index < size) { ret.push_back(intervals[index]); index++; } return ret; } };Solution#2 -- in place
do it later
No comments:
Post a Comment