Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.
For example,
If n = 4 and k = 2, a solution is:
[ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]--------------------------------------------------------
combination, note that in this case, [1,2] and [2,1] are considered the same
we can use a stack instead of vector for vector<int> num
class Solution { public: void comb (vector<vector<int> >&ret, vector<int> num, vector<int> cur, int k) { if (k == 0) { ret.push_back(cur); }else { int size = num.size(); for (int i=0;i<size;i++) { vector<int> temp = cur; temp.push_back(num[0]); num.erase(num.begin()); comb(ret,num,temp,k-1); } } } vector<vector<int> > combine(int n, int k) { // Start typing your C/C++ solution below // DO NOT write int main() function vector<int> num(n); for (int i=0;i<n;i++) { num[i] = 1+i; } vector<int> cur; vector<vector<int> > ret; comb(ret,num,cur,k); return ret; } };Update on Sep-16-2014
class Solution { public: void comb (vector<vector<int> > &rt, vector<int> cur, int n, int k, int index) { if (k == 0) { rt.push_back(cur); return; } for (int i = index; i <= n + 1 - k; i++) { vector<int> temp = cur; temp.push_back(i); comb(rt,temp,n,k - 1,i + 1); } } vector<vector<int> > combine(int n, int k) { vector<vector<int> > rt; vector<int> v; comb(rt,v,n,k,1); return rt; } };
同subsets的bit operation的方法
class Solution { public: void helper(vector<vector<int>> &rt,vector<int> cur, int n, int k, int index) { if (k == 0) { rt.push_back(cur); return; } if (k < 0 || index > n) return; helper(rt,cur,n,k,index + 1); cur.push_back(index); helper(rt,cur,n,k - 1,index + 1); } vector<vector<int>> combine(int n, int k) { vector<vector<int> > rt; vector<int> cur; helper(rt,cur,n,k,1); return rt; } };
Subsets
Given a set of distinct integers, S, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
If S =
[1,2,3]
, a solution is:[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]--------------------------------------------------
Solution #1 recursive, Combination
class Solution { public: void sub (vector<vector<int> > &ret, vector<int> S, vector<int> cur) { if (S.size() != 0) { int size = S.size(); for (int i=0;i<size;i++) { vector<int> temp = cur; temp.push_back(S[0]); S.erase(S.begin()); ret.push_back(temp); sub(ret,S,temp); } } } vector<vector<int> > subsets(vector<int> &S) { // Start typing your C/C++ solution below // DO NOT write int main() function sort(S.begin(),S.end()); vector<vector<int> > ret; vector<int> cur; ret.push_back(cur); sub(ret,S,cur); return ret; } };Update on Sep-17-2014
class Solution { public: void sub(vector<vector<int> > &rt, vector<int> cur, vector<int> S, int index) { rt.push_back(cur); for (int i = index; i < S.size(); i++) { vector<int> temp = cur; temp.push_back(S[i]); sub(rt,temp,S,i + 1); } } vector<vector<int> > subsets(vector<int> &S) { sort(S.begin(),S.end()); vector<vector<int> > rt; vector<int> v; sub(rt,v,S,0); return rt; } };Update on Nov-01-2014
Solution #2, Bitmap
For each S it has 2^S.size() subsets and each for loop iteration generates one subset
1 2 3
------
0 0 0
0 0 1
0 1 0
0 1 1
...
class Solution { public: vector<vector<int> > subsets(vector<int> &S) { int numOfSubsets = 1 << S.size(); sort(S.begin(),S.end()); vector<vector<int> > rt; for (int i = 0; i < numOfSubsets; i++) { int pos = 0; int bitMask = i; vector<int> sub; while (bitMask > 0) { if ((bitMask & 1) == 1) { sub.push_back(S[pos]); } bitMask >>= 1; pos++; } rt.push_back(sub); } return rt; } };
Update on Nov-18-2014
Solution #3 iterative
class Solution { public: vector<vector<int>> subsets(vector<int>& nums) { vector<vector<int> > rt; vector<int> cur; rt.push_back(cur); sort(nums.begin(),nums.end()); for (int i = 0; i < nums.size(); i++) { vector<vector<int> > temp = rt; for (int j = 0; j < temp.size(); j++) { temp[j].push_back(nums[i]); rt.push_back(temp[j]); } } return rt; } };
Update on July-5th-2015
每个数字都可以为 “有” 或 “无”
class Solution { public: void helper(vector<vector<int> > &rt, vector<int> nums, vector<int> cur,int index) { if (index == nums.size()) { rt.push_back(cur); return; } helper(rt,nums,cur,index + 1); cur.push_back(nums[index]); helper(rt,nums,cur,index + 1); } vector<vector<int>> subsets(vector<int>& nums) { sort(nums.begin(),nums.end()); vector<vector<int> > rt; vector<int> cur; helper(rt,nums,cur,0); return rt; } };
ToDo, 以上所有解法要再看一次
No comments:
Post a Comment