In a given array
nums of positive integers, find three non-overlapping subarrays with maximum sum.
Each subarray will be of size
k, and we want to maximize the sum of all 3*k entries.
Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.
Example:
Input: [1,2,1,2,6,7,5,1], 2 Output: [0, 3, 5] Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5]. We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.
Note:
nums.length will be between 1 and 20000.nums[i] will be between 1 and 65535.k will be between 1 and floor(nums.length / 3).
算法:假设i为要求的第2个subarray的起始点,则在[0, i - 1]和[i + k, end]各存在一个subarray,找出这3个subaaray和的最大值时的坐标就可
恶心的实现题,注意各种index的计算,最好用一个具体例子。
计算subarray的题一般都要用到累加数组,这题也不例外。
恶心的实现题,注意各种index的计算,最好用一个具体例子。
计算subarray的题一般都要用到累加数组,这题也不例外。
class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int n = nums.length;
int[] rt = new int[3], sums = new int[n + 1], leftMax = new int[n], rightMax = new int[n];
// 计算累加数组
for (int i = 0; i < n; i++) {
sums[i + 1] = sums[i] + nums[i];
}
// 计算i左边的最大subarray和,DP
for (int i = 1; i < n - 3 * k + 1; i++) {
int cur = sums[i + k ] - sums[i];
int preMax = sums[leftMax[i - 1] + k] - sums[leftMax[i - 1]];
if (cur > preMax) {
leftMax[i] = i;
}else {
leftMax[i] = leftMax[i - 1];
}
}
// 计算i右边的最大subarray和,DP
rightMax[n - k] = n - k;
for (int i = n - k - 1; i >= 2 * k; i--) {
int cur = sums[i + k] - sums[i];
int preMax = sums[rightMax[i + 1] + k] - sums[rightMax[i + 1]];
if (cur > preMax) {
rightMax[i] = i;
}else {
rightMax[i] = rightMax[i + 1];
}
}
int max = 0;
for (int i = k; i <= n - 2 * k; i++) {
int left = leftMax[i - k];
int right = rightMax[i + k];
int maxLeft = sums[left + k] - sums[left];
int maxRight = sums[right + k] - sums[right];
int cur = sums[i + k] - sums[i];
int total = maxLeft + maxRight + cur;
if (total > max) {
rt[0] = left;
rt[1] = i;
rt[2] = right;
max = total;
}
}
return rt;
}
}
No comments:
Post a Comment